Rubidium Lab
Adiabatic State Preparation in a Quantum Ising Spin Chain
arXiv:2404.07481
We report on adiabatic state preparation in the one-dimensional quantum Ising model using ultracold bosons in a tilted optical lattice. We prepare many-body ground states of controllable system sizes and observe enhanced fluctuations around the transition between paramagnetic and antiferromagnetic states, marking the precursor of quantum critical behavior. Furthermore, we find evidence for superpositions of domain walls and study their effect on the many-body ground state by measuring the populations of each spin configuration across the transition. These results shed new light on the effect of boundary conditions in finite-size quantum systems.