Erbium Lab
Graduate Students
Undergraduates
Former Group Members
Graduate Student (2019-2025)
Undergraduate (2022-2024)
Postdoc (2021-2023)
Visiting Student (2020-2021)
Graduate Student (2014-2020)
Graduate Student (2018-2021)
Graduate Student (2014-2021)
Graduate Student (2014-2019)
Undergraduate (2017-2018)
Postdoc (2014-2017)
Erbium offers an exciting opportunity to extend previous work in single-site imaging of quantum gases. Being highly dipolar, Erbium atoms interact via the long-range and anisotropic dipole force which gives rise to new emergent phenomena that do not arise in systems with only short-range interactions. The rich electronic structure of Erbium contains narrow transitions that can be used to create ultra-cold clouds directly via laser cooling. On the other hand, the broad transitions permit the implementation of ultra-fast imaging schemes. Since Erbium has multiple isotopes, there are various possibilities for studying lattice physics with either bosonic or fermionic statistics. With an erbium quantum gas microscope, we plan on studying aspects of magnetism, spin-orbit coupling, and novel phases of matter.
Technologies
A 2D tunable ‘accordion’ lattice is important for having strong dipolar interactions at short lattice spacings and near-perfect imaging fidelities at longer lattice spacings. Our approach uses an interferometrically aligned beamsplitter to create a pair of lattice beams whose phase difference remains constant across its entire aperture. We move the input beam with a galvanometer that changes the beam height without altering its angle. Together, the galvo and beamsplitter allow for the creation of a lattice whose spacing can be changed significantly without any fringe shift.
Progress
We generate a BEC of Erbium atoms with high condensate fraction in an optical dipole trap loaded from a narrow line magneto-optical trap. Thanks to fast evaporative cooling and narrow lines, experimental cycle times are significantly lower than other quantum gas microscopes.
Outlook
The Erbium experiment is well-equipped to study Fermionic, Bosonic, and dipolar physics. Site resolved imaging of dipoles on a lattice combined with long coherence times allows us to study Hubbard model physics enriched by long-range and anisotropic dipolar interactions. Synthetic gauge field physics is another exciting avenue for future work, having narrow transitions to generate Raman couplings and the advantage of low heating rates.
Topological Phases, Criticality, and Mixed State Order in a Hubbard Quantum Simulator

Phases of matter are conventionally distinguished from one another by local observables. Topological quantum phases lie outside this paradigm; their differences can only be learned by examining them globally. This has striking implications for the stability of these phases, their classification, and the phase transitions between them. In this work, we experimentally demonstrate these implications using interacting magnetic erbium atoms in an optical lattice. We show that a Mott insulator and a pinned charge-density wave in one dimension are in distinct crystalline symmetry-protected topological phases (CSPTs). The quantum phase transition separating them is revealed by measuring nonlocal string order parameters using site-resolved imaging. Remarkably, stacking two copies of these states eliminates the critical point – a signature feature of topological phases that underlies their classification. Moreover, we show that while a programmable symmetry-breaking disorder pattern can also remove this critical point, averaging over disorder restores it, supporting recent theoretical predictions of mixed-state order. Finally, we highlight a connection between one of these CSPTs and the Haldane insulator, and detect signatures of the transition between the Haldane and the Mott insulator. Our results establish a path toward probing broader symmetry-protected topology and mixed-state order in programmable quantum devices.
Fast single atom imaging for optical lattice arrays

High-resolution fluorescence imaging of ultracold atoms and molecules is paramount to performing quantum simulation and computation in optical lattices and tweezers. Imaging durations in these experiments typically range from a millisecond to a second, significantly limiting the cycle time. In this work, we present fast, 2.4 μs single-atom imaging in lattices, with 99.4% fidelity - pushing the readout duration of neutral atom quantum platforms to be close to that of superconducting qubit platforms. Additionally, we thoroughly study the performance of accordion lattices. We also demonstrate number-resolved imaging without parity projection, which will facilitate experiments such as the exploration of high-filling phases in the extended Bose-Hubbard models, multi-band or SU(N) Fermi-Hubbard models, and quantum link models.
Spin Squeezing with Magnetic Dipoles

Dipolar quantum solids emerging in a Hubbard quantum simulator
