Markus Greiner

Email: Click for Email
Cell: (617) 595-3811
Office: (617) 495-9875
Lab: (617) 495-0843
Mailing Address

Harvard University, Department of Physics
Jefferson 353
17 Oxford Street
Cambridge, MA 02138

Selected Publications

Bose-Einstein condenstates and Mott insulators in 3D optical lattices

Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms
M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, and I. Bloch
Nature 415, (39 - 44) (2002)

Collapse and revival of the matter wave field of a Bose-Einstein condensate.
M. Greiner, O. Mandel, T.W. Hänsch, and I. Bloch
Nature 419, (51 - 54) (2002)

Controlled collisions for multi-particle entanglement of optically trapped atoms.
O. Mandel, M. Greiner, A. Widera, T. Rom, T.W. Hänsch, and I. Bloch
Nature 425, (937 - 940) (2003)

Fermi Condenstates

Observation of resonance condensation of fermionic atom pairs.
C. A. Regal, M. Greiner, and D. S. Jin
Phys. Rev. Lett. 92, 040403 (2004)

Emergence of a molecular Bose-Einstein condensate from a Fermi gas.
M. Greiner, C. A. Regal, and D. S. Jin
Phys. Rev. Lett. 92, 040403 (2004)

Research Experience

01/12 – present
Professor of Physics at Harvard University, Cambridge, MA.
7/10 – 01/12
Associate Professor of Physics at Harvard University, Cambridge, MA.
8/05 – 07/10
Assistant Professor of Physics at Harvard University, Cambridge, MA.
4/03 – 8/05
Postdoctoral research position at JILA, Boulder, Colorado, in group of Deborah Jin
  • Creation of a fermionic condensate of ultracold atoms. This condensate of generalized Cooper pairs is considered to be the first realization of a fermionic superfluid in the strongly interacting BCS-BEC crossover regime
  • Realization of a molecular Bose-Einstein condensate created from an ultracold gas of fermionic atoms.
3/00 – 4/03
PhD in experimental Physics, Ludwig Maximilians Universität, Munich
  • Bose-Einstein condensates in three-dimensional optical lattices.
  • Quantum Phase transition from a superfluid to a Mott insulator in a ultracold gas of atoms.
  • Collapse and revival of the matter wave field of a Bose-Einstein condensate.
  • Spin elective transport in optical lattices: Creation of large scale entanglement of atoms in optical lattices via cold coherent collisions.
  • Creation of Molecules via photo-association in an optical lattice.
  • Conception and realization of the experiments and theoretical calculations; in the group of T. Hänsch, Ludwig Maximilians Universität, Munich and Max-Planck Institut fùr Quantenoptik, Garching.
  • This thesis was awarded the prize of the American Physical Society for the best thesis in AMO physics, DAMOP 2004 and the William L. McMillan Award for outstanding contributions in condensed matter physics.
1/99 – 2/00
Diploma Thesis in experimental Physics
  • Transport of magnetically trapped atoms: a simple approach to Bose-Einstein condensation.
  • Development of a new scheme for a Bose-Einstein condensate apparatus for optical lattice experiments; design and set up of the apparatus; in the group of T. Hänsch, Ludwig Maximilians Universität, Munich

Thesis

Ultracold quantum gases in three-dimensional optical lattice potentials
2003, PhD Thesis
Magnetischer Transfer von Atomen ein Weg zur einfachen Bose-Einstein-Kondensation
2000, Masters Thesis

Publications

Parton theory of magnetic polarons: Mesonic resonances and signatures in dynamics
06/2018
Phys. Rev. X 8, 011046 (2018) arXiv:1712.01874
Fabian Grusdt, Marton Kanasz-Nagy, Annabelle Bohrdt, C. S. Chiu, G. Ji, M. Greiner, D. Greif, Eugene Demler